680 research outputs found

    Enhanced triplet superconductivity in next generation ultraclean UTe2

    Full text link
    The spin-triplet superconductor UTe2_2 exhibits a myriad of exotic physical phenomena, including the possession of three distinct superconducting phases at ambient pressure for magnetic field μ0H\mu_0 H \leq 40 T aligned in certain orientations. However, contradictory reports between studies performed on UTe2_2 specimens of varying quality have severely impeded theoretical efforts to understand the microscopic properties of this material. Here, we report high magnetic field measurements on a new generation of ultraclean UTe2_2 specimens, which possess enhanced superconducting critical temperatures and fields compared to previous sample generations. Remarkably, for HH applied close to the hard magnetic bb direction, we find that the angular extent of magnetic field-reinforced superconductivity is significantly increased in these high purity crystals. This suggests that, in proximity to a field-induced metamagnetic transition, the enhanced role of magnetic fluctuations - that are strongly suppressed by disorder - is likely responsible for tuning UTe2_2 between two distinct spin-triplet superconducting phases. Our results reveal a strong sensitivity to crystalline disorder of the field-reinforced superconducting state of UTe2_2

    Macrocytosis during sunitinib treatment predicts progression-free survival in patients with metastatic renal cell carcinoma

    Get PDF
    Sunitinib, a multi-targeted receptor tyrosine kinase inhibitor, is a first-line treatment for metastatic renal cell carcinoma (mRCC) in patients in ‘low’ and ‘intermediate’ Memorial Sloan Kettering Cancer Center and Heng risk groups. Disruptions of hematopoiesis, such as anemia, neutropenia, and thrombocytopenia, are typically observed during sunitinib treatment. When it comes to RBC parameters, an increase in mean cell volume (MCV) tends to occur, meeting the criteria for macrocytosis in some patients (MCV > 100 fL). We examined changes in RBC parameters of 27 mRCC patients treated with sunitinib (initial dose of 50 mg/day, 6-week treatment: 4 weeks on, 2 weeks off) and correlated them with progression-free survival time (PFS). Patients who had macrocytosis after 3 treatment cycles had significantly longer PFS than those whose MCV stayed less than 100 fL (not reached vs. 11.2 months, p < 0.001). We also found a correlation between MCV values after the first and third treatment cycles and the risk of progression: HR of 0.9 (0.81–0.99) and 0.76 (0.65–0.90) per 1 fL increase in MCV, respectively. The mechanism of MCV elevation during sunitinib treatment has not yet been fully explained. One of the probable causes is sunitinib’s inhibitory influence on c-Kit kinase, as is the case with imatinib. For mRCC patients, this phenomenon could help predict PFS, but since our sample was small, further studies are essential

    Prognostic model for patient survival in primary anorectal mucosal melanoma:stage at presentation determines relevance of histopathologic features

    Get PDF
    Pathological staging of primary anorectal mucosal melanoma is often performed according to the American Joint Commission on Cancer (AJCC) guidelines for cutaneous melanoma, as an anorectal melanoma-specific staging system does not exist. However, it remains unknown whether prognostic factors derived for cutaneous melanoma also stratify risk in anorectal melanoma. We retrospectively determined correlations between clinicopathological parameters and disease-specific survival in 160 patients. Patients were grouped by clinical stage at presentation (localized disease, regional or distant metastases). Cox proportional hazards regression models determined associations with disease-specific survival. We also summarized the somatic mutations identified in a subset of tumors analyzed for hotspot mutations in cancer-associated gene panels. Most of the patients were white (82%) and female (61%). The median age was 62 years. With a median follow-up of 1.63 years, median disease-specific survival was 1.75 years, and 121 patients (76%) died of anorectal melanoma. Patients presenting with regional (34%) or distant metastases (24%) had significantly shorter disease-specific survival compared to those with disease localized to the anorectum (42%). Of the 71 anorectal melanoma tumors analyzed for hotspot genetic alterations, somatic mutations involving the KIT gene (24%) were most common followed by NRAS (19%). Increasing primary tumor thickness, lymphovascular invasion, and absence of regression also correlated with shorter disease-specific survival. Primary tumor parameters correlated with shorter disease-specific survival in patients presenting with localized disease (tumor thickness) or regional metastases (tumor thickness, absence of regression, and lymphovascular invasion), but not in patients presenting with distant metastases. Grouping of patients according to a schema based on modifications of the 8th edition AJCC cutaneous melanoma staging system stratified survival in anorectal melanoma. Our findings support stage-specific associations between primary tumor parameters and disease-specific survival in anorectal melanoma. Moreover, the AJCC cutaneous melanoma staging system and minor modifications of it predicted survival among anorectal melanoma patients

    Beyond BRAFV600: Clinical Mutation Panel Testing by Next-Generation Sequencing in Advanced Melanoma

    Get PDF
    The management of melanoma has evolved owing to improved understanding of its molecular drivers. To augment the current understanding of the prevalence, patterns, and associations of mutations in this disease, the results of clinical testing of 699 advanced melanoma patients using a pan-cancer next-generation sequencing (NGS) panel of hotspot regions in 46 genes were reviewed. Mutations were identified in 43 of the 46 genes on the panel. The most common mutations were BRAFV600 (36%), NRAS (21%), TP53 (16%), BRAFNon-V600 (6%), and KIT (4%). Approximately one-third of melanomas had >1 mutation detected, and the number of mutations per tumor was associated with melanoma subtype. Concurrent TP53 mutations were the most frequent events in tumors with BRAFV600and NRAS mutations. Melanomas with BRAFNon-V600mutations frequently harbored concurrent NRAS mutations (18%), which were rare in tumors with BRAFV600 mutations (1.6%). The prevalence of BRAFV600 and KIT mutations were significantly associated with melanoma subtypes, and BRAFV600 and TP53 mutations were significantly associated with cutaneous primary tumor location. Multiple potential therapeutic targets were identified in metastatic unknown primary and cutaneous melanomas that lacked BRAFV600and NRAS mutations. These results enrich our understanding of the patterns and clinical associations of oncogenic mutations in melanoma

    Left atrioventricular remodeling in the assessment of the left ventricle diastolic function in patients with heart failure: a review of the currently studied echocardiographic variables

    Get PDF
    Multiparametric echocardiographic imaging of the failing heart is now increasingly used and useful in decision making in heart failure. The reasons for this, relies on the need of different strategies of handling these patients, as differentiation of systolic or diastolic dysfunction, as well as on the gamma of approaches available, such as percutaneous and surgical revascularization, devices implantations, and valvular regurgitations and stenosis corrections. Congestive heart failure in patients with normal left ventricular diameters or preserved left ventricular ejection fraction had been pointed out recently as present in a proportion so high as 40 to 50 percent of cases of heart failure, mainly due to the epidemics in well developed countries, as is the problem of not well controlled metabolic states (such as obesity and diabetes), but also due to the real word in developing countries, as is the case of hypertension epidemics and its lack of adequate control. As a matter of public utility, the guidelines in the diagnosis and treatment of such patients will have to be cheap, available, easily reproducible, and ideally will furnish answers for the clinician questions not in a binary "black or white" manner, but with graduations, so if possible it has to be quantitative. The present paper aim to focus on the current clinical applications of tissue Doppler and of left atrial function and remodeling, and its pathophysiologic relationship with the left ventricle, as will be cleared in the documented review of echocardiography that follows, considering that the need of universal data on the syndrome of the failing heart does not mean, unfortunately, that all patients and clinicians in developing countries have at their own health facilities the same imaging tools, since they are, as a general rule, expensive

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    Get PDF
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe

    Particle identification in ALICE: a Bayesian approach

    Get PDF
    We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx\mathrm{d}E/\mathrm{d}x) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels KS0ππ+{\rm K}^0_S \rightarrow \pi^-\pi^+, ϕKK+\phi \rightarrow {\rm K}^-{\rm K}^+, and Λpπ\Lambda \rightarrow {\rm p}\pi^- in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected pTp_{\rm T} spectra of pions, kaons, protons, and D0^0 mesons in pp collisions at s=7\sqrt{s}=7 TeV. In all cases, the results using Bayesian PID were found to be consistent with previous measurements performed by ALICE using a standard PID approach. For the measurement of D0Kπ+^0 \rightarrow {\rm K}^-\pi^+, it was found that a Bayesian PID approach gave a higher signal-to-background ratio and a similar or larger statistical significance when compared with standard PID selections, despite a reduced identification efficiency. Finally, we present an exploratory study of the measurement of Λc+pKπ+\Lambda_{\rm c}^{+}\rightarrow {\rm p} {\rm K}^-\pi^+ in pp collisions at s=7\sqrt{s}=7 TeV, using the Bayesian approach for the identification of its decay products

    Measurement of the production of high-p(T) electrons from heavy-flavour hadron decays in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPElectrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass of energy root s(NN) = 2.76 TeV. The transverse momentum (pT) differential production yields at mid-rapidity were used to calculate the nuclear modification factor R-AA in the interval 3 < p(T) < 18 GeV/c. The R-AA shows a strong suppression compared to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb-Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down to a factor of 2) in semi-peripheral (50-80%) collisions is observed. The suppression of electrons in this broad p(T) interval indicates that both charm and beauty quarks lose energy when they traverse the hot medium formed in Pb-Pb collisions at LHC.771467481CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoThe ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Education of China (MOE of China), Ministry of Science & Technology of China (MOST of China) and National Natural Science Foundation of China (NSFC), China; Ministry of Science, Education and Sports and Croatian Science Foundation, Croatia; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; Danish National Research Foundation (DNRF), The Carlsberg Foundation and The Danish Council for Independent Research–Natural Sciences, Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), India; Indonesian Institute of Science, Indonesia; Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia y Tecnología (CONACYT), through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), South Korea; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Ministerio de Ciencia e Innovacion, Spain; Knut & Alice Wallenberg Foundation (KAW) and Swedish Research Council (VR), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Office of the Higher Education Commission under NRU project of Thailand and Suranaree University of Technology (SUT), Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States
    corecore